$\mathbf{C}-\mathbf{H}$ Activation at $\mathbf{P t}(\mathrm{II})$ To Form Stable $\mathbf{P t}(\mathrm{IV})$ Alkyl Hydrides

Douglas D. Wick and Karen I. Goldberg*
Department of Chemistry, Box 351700 University of Washington, Seattle, Washington 98195-1700

Received June 13, 1997

The search for selective practical methods of alkane functionalization has led to intensive investigation of the mechanistic details of Shilov's oxidation of alkanes by Pt salts in aqueous solution. ${ }^{1-3}$ Strong support has been presented for a pathway in which activation of the alkane $\mathrm{C}-\mathrm{H}$ bond occurs by oxidative addition to a $\mathrm{Pt}(\mathrm{II})$ species and generation of a $\mathrm{Pt}(\mathrm{IV})$ alkyl hydride as an undetected intermediate. ${ }^{2}$ Consistent with this proposal, the first well-defined example of intermolecular $\mathrm{C}-\mathrm{H}$ bond activation of alkanes by model $\mathrm{Pt}(\mathrm{II})$ centers was recently reported. ${ }^{1}$ Although $\mathrm{C}-\mathrm{H}$ bond activation was clearly established by observation of $\mathrm{Pt}(\mathrm{II})$ alkyl/aryl exchange products, $\mathrm{Pt}(\mathrm{IV})$ alkyl hydrides were not directly observed. This complicates the distinction between this exchange occurring by a true oxidative addition/reductive elimination sequence or by a σ-bond metathesis pathway. Unfortunately, in the reported system $\left(\mathrm{Pt}(\mathrm{II})\right.$ complex $\left.=\left[(\text { tmeda }) \mathrm{PtMe}\left(\mathrm{NC}_{5} \mathrm{~F}_{5}\right)\right]^{+}\right)$, the $\mathrm{Pt}(\mathrm{IV})$ $\mathrm{C}-\mathrm{H}$ oxidative addition products would not be stable to $\mathrm{C}-\mathrm{H}$ reductive elimination. ${ }^{1}$

Recent reports of unusually stable $\mathrm{Pt}(\mathrm{IV})$ alkyl hydrides, $\mathrm{Tp}^{\mathrm{R}^{\prime}} \mathrm{PtR}_{2} \mathrm{H}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Me} ; \mathrm{Tp}^{\mathrm{R}^{\prime}}=\mathrm{Tp}^{\prime}\right.$ (hydridotris(3,5-dimethylpyrazolyl)borate) and Tp (hydridotris(pyrazolyl)borate)), ${ }^{4}$ led us to examine potential $\mathrm{C}-\mathrm{H}$ bond activation reactions with $\mathrm{Pt}(\mathrm{II})$ complexes that would generate analogous stable $\mathrm{Pt}(\mathrm{IV})$ alkyl hydrides. We report here the reaction of $\mathrm{K}\left[\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2}\right]^{4 \mathrm{a}}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in arene and alkane solvents, $\mathrm{RH}(\mathrm{RH}=$ benzene, pentane, and cyclohexane), to yield the $\mathrm{Pt}(\mathrm{IV})$ products, Tp ${ }^{\prime}$ PtMeRH (Scheme 1). This constitutes the first example of the intermolecular oxidative addition of arene and alkane $\mathrm{C}-\mathrm{H}$ bonds by a $\mathrm{Pt}(\mathrm{II})$ species resulting in stable $\mathrm{Pt}(\mathrm{IV})$ compounds.

The precursor complex $\mathrm{K}\left[\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2}\right](\mathbf{1 a})^{5}$ was prepared by reaction of $\left[\mathrm{PtMe}_{2}\left(\mu-\mathrm{SMe}_{2}\right)\right]_{2}{ }^{6}$ with KTp^{\prime} in THF at ambient temperature. ${ }^{4 \mathrm{a}}$ A metathesis reaction of $\mathbf{1 a}$ with $[\mathrm{PPN}] \mathrm{Cl}^{7}$ generated $[\mathrm{PPN}] \mathrm{Tp}^{\prime} \mathrm{PtMe}_{2}(\mathbf{1 b})^{5}$ and single crystals of $\mathbf{1 b}$, suitable for X-ray diffraction, were grown from a THF solution layered with $\mathrm{Et}_{2} \mathrm{O}$ at $-33^{\circ} \mathrm{C}$. An ORTEP of $\mathbf{1 b}$ is shown in Figure $1 .{ }^{8}$ The geometry of the platinate is a distorted square plane, and the Tp^{\prime} ligand is coordinated to the $\mathrm{Pt}(\mathrm{II})$ center in a bidentate fashion with the nitrogen of the noncoordinated pyrazolyl ring directed away from the Pt center. ${ }^{9,10}$

The highly electrophilic reagent $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ has been used to abstract a methyl anion from early transition-metal methyl

[^0]

Figure 1. ORTEP drawing of 1b (PPN[Tp $\left.\left.{ }^{\prime} \mathrm{PtMe}_{2}\right] \cdot 2 \mathrm{THF} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$. Ellipsoids are shown at the 50% probability level. Hydrogens, the PPN cation, THF, and $\mathrm{Et}_{2} \mathrm{O}$ molecules are not shown.

Scheme 1

complexes and create an open coordination site at the metal center. ${ }^{11}$ Similar reactivity was recently observed upon reaction with $\mathrm{Pt}(\mathrm{II})$ methyl complexes. ${ }^{12}$ We took advantage of this methodology and reacted $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with $\mathrm{K}\left[\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2}\right]$ with the intent of abstracting the $\mathrm{Pt}(\mathrm{II})$ methyl group and generating "Tp'PtMe" ($\eta^{2}-\mathrm{Tp}$), a three-coordinate $\mathrm{Pt}(\mathrm{II})$ species, which might activate a solvent molecule RH.

Reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with $\mathrm{K}\left[\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2}\right]$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ does indeed lead to $\mathrm{C}-\mathrm{H}$ bond activation of the solvent producing $\mathrm{Tp}^{\prime} \mathrm{PtMe}-$ (Ph) $\mathrm{H}(\mathbf{2})$ and $\mathrm{K}\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] .{ }^{13} \quad \mathbf{2}$ was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$, which showed a diagnostic $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{H}$ signal at $\delta-19.35\left({ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=1368 \mathrm{~Hz}\right) .{ }^{14}$ A significant amount of $\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2} \mathrm{H}(3)^{4 \mathrm{a}, 15}\left(\right.$ ca. $\left.20 \%, \delta-20.39\left({ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=1358 \mathrm{~Hz}\right)\right)$ is also formed during these reactions. We attribute the formation

[^1]of this material to the presence of adventitious water. As recently reported by Puddephatt and co-workers, $\mathrm{H}_{2} \mathrm{O}$ complexes to $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to make the very strong acid $\mathrm{H}\left[\mathrm{HOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ that can protonate $\mathrm{Pt}(\mathrm{II})$ centers. ${ }^{12}$ Protonation of $\mathbf{1 a}$ by acid was previously reported to generate 3 . ${ }^{4 a}$ To prevent large amounts of $\mathbf{3}$ from being produced, it was necessary to take scrupulous care to avoid any source of $\mathrm{H}_{2} \mathrm{O} .{ }^{16}$

When the reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with 1 a was carried out in $\mathrm{C}_{6} \mathrm{D}_{6}$, the hydride signal for the protonation product, $\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2} \mathrm{H}$ (3), appeared alone in the upfield region. However, the PtCH_{3} signal assignable to $\mathrm{Tp}^{\prime} \mathrm{PtMe}(\mathrm{D})\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)\left(2-d_{6}\right)$ still appeared at $1.84\left({ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=69.4 \mathrm{~Hz}\right)$ along with a set of Tp^{\prime} signals identical with those of $\mathbf{2}$. This experiment confirmed that the hydride of 2 resulted from solvent activation but that of $\mathbf{3}$ did not.

Reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with $\mathbf{1 a}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ followed by removal of the solvent under vacuum left an oily residue containing $\mathrm{Tp}^{\prime} \mathrm{PtMe}(\mathrm{Ph}) \mathrm{H}(\mathbf{2}), \mathrm{Tp}^{\prime} \mathrm{PtMe}_{2} \mathrm{H}(\mathbf{3})$, and $\mathrm{K}\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$. Initial attempts to purify this mixture have been unsuccessful. Dissolution of this product mixture in $\mathrm{C}_{6} \mathrm{D}_{6}$ and heating of the solution for 1 day at $63{ }^{\circ} \mathrm{C}$ (or maintaining the solution at ambient temperature for 1 month) results in no changes in the number of products or product ratios. The high thermal stability of complex 2 is similar to that previously reported for 3 and $\mathrm{TpPtMe}_{2} \mathrm{H}$ and is likely due to the inhibition of formation of a five-coordinate species by the chelate effect. ${ }^{4}$

The reaction of $\mathbf{1 a}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was also carried out in alkane solvents, and $\mathrm{C}-\mathrm{H}$ bond activation of pentane and cyclohexane was observed. Due to the limited solubility of 1a in alkanes, 1a was stirred as a suspension with the boron reagent in pentane or cyclohexane at $50^{\circ} \mathrm{C}$ for 2 days. Removal of the solvent and dissolution of the residue in $\mathrm{C}_{6} \mathrm{D}_{6}$ allowed observation of the $\mathrm{Pt}(\mathrm{IV})$ alkyl hydrides, $\mathrm{Tp}^{\prime} \mathrm{PtMeRH}\left(\mathrm{R}=n-\mathrm{C}_{5} \mathrm{H}_{11}\right.$ (4) and $\mathrm{Cy}(\mathbf{5})$), by ${ }^{1} \mathrm{H}$ NMR. ${ }^{17}$ The $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{H}$ signals appear at $\delta-20.73\left({ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=1393 \mathrm{~Hz}\right)$ and $\delta-21.37\left({ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=1442\right.$ Hz) for 4 and 5 , respectively. The production of $\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2} \mathrm{H}$ (3) is a significant competing reaction ($c a .43 \%$) in these alkane activation reactions, and once again, its formation is attributed to adventitious water.

The reaction of the $\mathrm{Pt}(\mathrm{II})$ complex with pentane is highly selective. Only two hydride signals, assignable to 4 and 3 , were observed in the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ after reaction of $\mathbf{1 a}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in pentane at $50{ }^{\circ} \mathrm{C}$. The assignment of 4 as the n-pentyl derivative (the product resulting from $\mathrm{C}-\mathrm{H}$ activation at the primary carbon) is based on the observation of the four methylene carbon resonances of the n-pentyl ligand in a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-DEPT NMR spectrum of $4 .{ }^{18}$ The signal for C_{α} appears at $\delta 1.3\left({ }^{1} J_{\mathrm{Pt}-\mathrm{C}}=637 \mathrm{~Hz}\right)$.

A plausible pathway for these $\mathrm{C}-\mathrm{H}$ bond activation reactions is abstraction of an anionic methyl group from $\left[\mathrm{Tp}^{\prime} \mathrm{PtMe}_{2}\right]^{-}$by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ generating the very reactive three-coordinate " Tp 'PtMe" species ($\eta^{2}-\mathrm{Tp}$), which then undergoes oxidative addition of a $\mathrm{C}-\mathrm{H}$ bond of the solvent. The five-coordinate $\mathrm{Pt}(\mathrm{IV})$ species, $\eta^{2}-\mathrm{Tp}{ }^{\prime} \mathrm{PtMeRH}$, is then rapidly trapped by the third pyrazolyl ring to form the thermally stable $\mathrm{Tp}^{\prime} \mathrm{PtMeR}(\mathrm{H}) .{ }^{19}$
(16) The boron reagent was recrystallized from pentane prior to use. The glassware was pretreated with bis(trimethylsilyl)acetamide and flame dried under vacuum immediately prior to use. See: Hughes, R. P.; Rose, P. R.; Rheingold, A. L. Organometallics 1993, 12, 3109.
(17) Tp'PtMeRH ($\mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}$ (4) and Cy (5)): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: δ $-20.73\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=1393 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PtH}\right), 0.91\left(\mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{Pt}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Pt}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Pt}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=69.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PtCH}_{3}\right), 1.66(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PtCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right), 2.08,2.09,2.15,2.19,2.25,2.40($ all s, each 3 H , $\left.\mathrm{Tp}^{\prime} \mathrm{CH}_{3}\right), 2.72\left(\mathrm{~m},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}} \sim 68 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PtCH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 5.50,5.57$, 5.61 (all s, each $\left.1 \mathrm{H}, \mathrm{Tp}{ }^{\prime} \mathrm{CH}\right)$. 5: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-21.37\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{H}}=\right.$ $1442 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PtH}), 1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PtCH}\left(\mathrm{CH}_{2}\right)_{5}\right), 1.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PtCH}\left(\mathrm{CH}_{2}\right)_{5}\right)$, $1.67\left(\mathrm{~s},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=69.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PtCH}_{3}\right), 1.80\left(\mathrm{~m}, 4 \mathrm{H}, \operatorname{PtCH}\left(\mathrm{CH}_{2}\right)_{5}\right), 2.06$, 2.10, 2.16, 2.17, 2.38, 2.44 (all s, each $3 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}$), $3.14\left(\mathrm{tt}, J_{\mathrm{H}-\mathrm{H}}=12.0\right.$ $\left.\mathrm{Hz}_{5}, 7.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{Pt}-\mathrm{H}}=88.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{PtCH}\left(\mathrm{CH}_{2}\right)_{5}\right), 5.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Tp}{ }^{\prime} \mathrm{CH}\right)$, $5.59\left(\mathrm{~s},{ }^{4} J_{\mathrm{Pt}-\mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Tp}{ }^{\prime} \mathrm{CH}\right), 5.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Tp}{ }^{\prime} \mathrm{CH}\right)$.
(18) Selected ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-DEPT NMR data for 4, Pt-pentyl CH_{2} signals: $1.3\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{C}}=637 \mathrm{~Hz}, \mathrm{C}_{\alpha}\right), 23.0\left(\mathrm{~s}, \mathrm{C}_{\delta}\right), 33.7\left(\mathrm{~s}, \mathrm{C}_{\gamma}\right), 36.1\left(\mathrm{~s},{ }^{2} J_{\mathrm{Pt}-\mathrm{C}}=87\right.$ $\mathrm{Hz}, \mathrm{C}_{\beta}$).

Support for this analysis of the reaction pathway is obtained by considering the microscopic reverse of this process, reductive elimination of $\mathrm{C}-\mathrm{H}$ bonds from $\mathrm{Pt}(\mathrm{IV})$. We and others have documented the consistent involvement of five-coordinate intermediates (B) in $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ reductive elimination from octahedral $\operatorname{Pt}(\mathrm{IV})$ and $\operatorname{Pd}(\mathrm{IV})$ centers (\mathbf{A}; eq 1)..2,20,21 The

principle of microscopic reversibility then requires that a ligand must be lost from the square-planar $\mathrm{Pt}(\mathrm{II})$ complex (D) prior to oxidative addition (reverse of eq 1). Complexes such as \mathbf{C} (fourcoordinate $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{C} \sigma$-complexes) and/or a three-coordinate $\mathrm{Pt}(\mathrm{II})$ species $\left(\mathbf{C}^{\prime}\right)$ are likely species along the reaction pathway.

This analysis is consistent with our results and also with the recent report by Labinger and Bercaw of intermolecular alkane $\mathrm{C}-\mathrm{H}$ activation by $\left[(\mathrm{tmeda}) \mathrm{PtMe}\left(\mathrm{NC}_{5} \mathrm{~F}_{5}\right)\right] \mathrm{B}\left(\mathrm{Ar}_{\mathrm{f}}\right)_{4}$ and Whitesides's report of intermolecular arene $\mathrm{C}-\mathrm{H}$ activation by trans$\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right) .{ }^{1,22}$ Both of these $\mathrm{Pt}(\mathrm{II})$ complexes are square-planar species with one particularly weakly bound ligand. Bercaw and Labinger have also reported strong evidence for a $\mathrm{Pt}(\mathrm{II}) \mathrm{C}-\mathrm{H} \sigma$-complex, (tmeda) $\mathrm{PtMe}\left(\mathrm{CH}_{4}\right)^{+}$(an intermediate analogous to \mathbf{C}), on the reaction path of $\mathrm{C}-\mathrm{H}$ reductive elimination of methane from the five-coordinate $\mathrm{Pt}(\mathrm{IV})$ species, (tmeda) $\mathrm{PtMe}_{2} \mathrm{H}^{+} .{ }^{2}$

In summary, oxidative addition to $\mathrm{Pt}(\mathrm{II})$ of the $\mathrm{C}-\mathrm{H}$ bonds of alkanes to form $\mathrm{Pt}(\mathrm{IV})$ alkyl hydride complexes, a reaction which has been proposed as the $\mathrm{C}-\mathrm{H}$ activation step in Shilov alkane oxidation stystems, has now been documented in a model system. The success of demonstrating this reactivity has relied on two factors: (1) the generation of a reactive three-coordinate $\mathrm{Pt}(\mathrm{II})$ species and (2) rapid trapping of the five-coordinate $\mathrm{Pt}(\mathrm{IV})$ species. We will use these principles as we continue our studies of the mechanism and selectivity of oxidative addition/reductive elimination reactions at $\mathrm{Pt}(\mathrm{II}) / \mathrm{Pt}(\mathrm{IV})$.

Acknowledgment is made for support from the National Science Foundation, the Union Carbide Innovation Recognition Program, the DuPont Educational AID Program, and the University of Washington (UW). K.I.G. is an Alfred P. Sloan Research Fellow. We are grateful for a loan of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from Johnson Matthey/Aesar/Alfa and gifts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ from Prof. D. McConville (University of British Columbia) and Dr. R. Fisher (Exxon Chemical). Prof. R. Hughes (Dartmouth College) is acknowledged for assistance in glassware silylation techniques. The X-ray structural determination of $\mathbf{1 b}$ was performed by Dr. D. Barnhart (UW).

Supporting Information Available: Experimental procedures, NMR data for $\mathbf{1}(\mathbf{a}, \mathbf{b})$, and crystal structure data for $\mathbf{1 b}$ (16 pages). See any current masthead page for ordering and Internet access instructions.

JA971952G

[^2]
[^0]: (1) Holtcamp, M. W.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1997, 119, 848.
 (2) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 5961 and references therein.
 (3) See: (a) Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Organomet. Chem. 1995, 504, 75 and references therein. (b) Labinger, J. A.; Herring, A. M.; Lyon, D. K.; Luinstra, G. A.; Bercaw, J. E.; Horváth, I. T.; Eller, K. Organometallics 1993, 12, 895. (c) Hutson, A. C.; Lin, M.; Basickes, N.; Sen, A. J. Organomet. Chem. 1995, 504, 69 and references therein.
 (4) (a) O'Reilly, S. A.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1996, 118, 5684. (b) Canty, A. J.; Dedieu, A.; Jin, H.; Milet, A.; Richmond, M. K. Organometallics 1996, 15, 2845.
 (5) ${ }^{1} \mathrm{H}$ NMR data (for $\mathbf{1 a}$ and $\mathbf{1 b}$) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (for $\mathbf{1 b}$) are provided in the Supporting Information.
 (6) Scott, J. D.; Puddephatt, R. J. Organometallics 1983, 2, 1643.
 (7) $\mathrm{PPN}=$ bis(triphenylphosphoranylidene)ammonium.
 (8) $\mathbf{1 b} \cdot \mathbf{2}(\mathrm{THF}) \cdot \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{C}_{53} \mathrm{H}_{58} \mathrm{BN}_{7} \mathrm{P}_{2} \mathrm{Pt}^{\circ} \cdot \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right), \mathrm{MW}=1279.28$, pale yellow rhombohedron, triclinic, space group $=P 1, a=13.666(2) \AA$, $b=14.538(3) \AA, c=17.631(3) \AA, \alpha=70.85(2)^{\circ}, \beta=88.63(2)^{\circ}, \gamma=$ $65.92(2)^{\circ}, V=2996(1) \AA^{3}, Z=2, R_{1}=0.0436[I>2 \sigma(I)], \mathrm{GOF}=1.053$.

[^1]: (9) The six-membered $\mathrm{PtN}_{4} \mathrm{~B}$ ring is in a boat conformation with the Pt and B being respectively, 0.890 and $0.498 \AA$ above the plane defined by $\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4$. The dihedral angle defined by the planes $\mathrm{N} 1-\mathrm{Pt}-\mathrm{C} 1$ and $\mathrm{N} 3-\mathrm{Pt}-\mathrm{C} 2$ is 3°, and that defined by the planes $\mathrm{Pt}-\mathrm{N} 3-\mathrm{N} 1$ and $\mathrm{C} 2-$ $\mathrm{Pt}-\mathrm{C} 1$ is 2.8°. Selected bond distances (A): $\mathrm{Pt}-\mathrm{C} 1, \mathrm{Pt}-\mathrm{C} 2, \mathrm{Pt}-\mathrm{B}$, $2.030(8), 2.032(8), 3.366(5)$, respectively. Selected bond angles $\left(^{\circ}\right): \mathrm{N} 1-$ $\mathrm{Pt}-\mathrm{N} 3, \mathrm{~N} 1-\mathrm{Pt}-\mathrm{C} 1, \mathrm{~N} 3-\mathrm{Pt}-\mathrm{C} 1, \mathrm{~N} 1-\mathrm{Pt}-\mathrm{C} 2, \mathrm{~N} 3-\mathrm{Pt}-\mathrm{C} 2, \mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 2$, 86.0(2), 94.2(3), 178.0(3), 178.0(3), 94.1(3), 85.7(4), respectively.
 (10) (a) Rush, P. E.; Oliver, J. D. J. Chem. Soc., Chem. Commun. 1974, 996. (b) Oliver, J. D.; Rice, N. C. Inorg. Chem. 1976, 15, 2741.
 (11) See for example: (a) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 842 and references therein. (b) Gillis, D. J.; Quyoum, R.; Tuderet, M. J.; Wang, Q.; Jeremic, D.; Roszak, Q. W.; Baird, M. C. Organometallics 1996, 15, 3600.
 (12) (a) Hill, G. S.; Manojlovic-Muir, L.; Muir, K. W.; Puddephatt, R. J. Organometallics 1997, 16, 525. (b) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 1996, 1809.
 (13) Comparison of the ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ spectrum of the reaction mixture containing 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (br s at $\delta-15$) with that of a sample of $\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}{ }^{-}$, made from the reaction of MeLi and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (br s at $\delta-15$), confirmed that abstraction of methyl anion from 1a had occurred.
 (14) (a) $\mathrm{Tp}^{\prime} \mathrm{PtMe}(\mathrm{Ph}) \mathrm{H}(2):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-19.35\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{H}}=\right.$ $1368 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PtH}), 1.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~s},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=69.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, PtCH_{3}), 1.87, 2.10, 2.11, 2.18, 2.23 (all s, each $\left.3 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}\right), 5.48\left(\mathrm{~s},{ }^{4} J_{\mathrm{Pt}-\mathrm{H}}\right.$ $\left.=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Tp}{ }^{\prime} \mathrm{CH}\right), 5.53\left(\mathrm{~s},{ }^{4} J_{\mathrm{Pt}-\mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Tp} \mathrm{C}^{\prime} \mathrm{CH}\right), 5.59(\mathrm{~s}, 1$ $\left.\mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}\right), 6.80\left(\mathrm{bt},{ }^{4} J_{\mathrm{Pt}-\mathrm{H}}=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{m}\right), 7.01\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7.6 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{Pt}-\mathrm{H}}=42.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{o}\right), 7.03\left(\mathrm{tt}, J_{\mathrm{H}-\mathrm{H}}=2.3 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{p}\right), 7.19$ (bt, $\left.{ }^{4} J_{\mathrm{Pt}-\mathrm{H}}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{m^{\prime}}\right), 7.82\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{Pt}-\mathrm{H}}=64.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}_{o^{\prime}}$).
 (15) Tp ${ }^{\prime} \mathrm{PtMe}_{2} \mathrm{H}(3):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-20.39\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{Pt}-\mathrm{H}}=1358 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{PtH}), 1.66\left(\mathrm{~s},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=67.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{PtCH}_{3}\right), 2.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}\right)$, 2.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}$), $2.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}_{3}\right), 5.51$ $\left(\mathrm{s},{ }^{4} J_{\mathrm{Pt}-\mathrm{H}}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}\right), 5.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Tp}^{\prime} \mathrm{CH}\right)$.

[^2]: (19) The alternative that the Pt species which activates the $\mathrm{C}-\mathrm{H}$ bond of the solvent might be $\eta^{3}-\mathrm{Tp}^{\prime} \mathrm{PtMe}$ should also be considered. Such a fourcoordinate d^{8} species would be analogous to the $C p^{* M L}$ fragments of Ir and Rh well known to undergo oxidative addition of $\mathrm{C}-\mathrm{H}$ bonds. See: Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Pederson, T. H. Acc. Chem. Res. 1995, 28, 154.
 (20) Goldberg, K. I.; Yan, J. Y.; Breitung, E. M. J. Am. Chem. Soc. 1995, 117, 6889 .
 (21) Representative examples: (a) Brown, M. P.; Puddephatt, R. J.; Upton, C. E. E. J. Chem. Soc., Dalton Trans. 1974, 2457. (b) Roy, S.; Puddephatt, R. J.; Scott, J. D. J. Chem. Soc., Dalton Trans. 1989, 2121. (c) Canty, A. J. Acc. Chem. Res. 1992, 25, 83 and references therein. (d) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. Organometallics, 1995,14, 4966 (e) de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Speck, A. L.; van Koten, G. Organometallics, 1989, 8, 2907.
 (22) Brainard, R. L.; Nutt, W. R.; Lee, T. R.; Whitesides, G. M. Organometallics 1988, 7, 2379.

